(资料图片)
UC伯克利的一位机器学习教授JacobSteinhard发表长文,对2030年的GPT作了预测。为了更好地进行预测,Jacob查询了各种来源的信息,包括经验缩放定律、对未来计算和数据可用性的预测、特定基准的改进速度、当前系统的经验推理速度,以及未来可能的并行性改进。概括来看,Jacob认为,GPT2030会在以下几个方面超过人类工作者。1.编程、黑客任务、数学、蛋白质设计。2.工作和思考的速度:预计GPT2030每分钟处理的单词是人类的5倍,而每FLOP都多5倍的话,总共就是125倍。3.G UC伯克利的一位机器学习教授JacobSteinhard发表长文,对2030年的GPT作了预测。为了更好地进行预测,Jacob查询了各种来源的信息,包括经验缩放定律、对未来计算和数据可用性的预测、特定基准的改进速度、当前系统的经验推理速度,以及未来可能的并行性改进。概括来看,Jacob认为,GPT2030会在以下几个方面超过人类工作者。1.编程、黑客任务、数学、蛋白质设计。2.工作和思考的速度:预计GPT2030每分钟处理的单词是人类的5倍,而每FLOP都多5倍的话,总共就是125倍。3.GPT2030可以进行任意复制,并进行并行运算。算力足够的话,它足以完成人类需要执行180万年的工作,结合2中的结论,这些工作只需2.4个月,就能完成。4.由于具有相同的模型权重,GPT的副本之间可以共享知识。因此,GPT可以在1天内学完人类需要学2500年的知识。5.GPT还能接受其它模态的训练,包括各种违反直觉的方式,比如分子结构、网络流量、低级机器码等,它甚至会形成我们没有的概念。当然,Jacob表示,GPT的滥用问题也会更加严重,并行化和高速将使模型严重威胁网络安全。它的快速并行学习还会转向人类行为,而因为自己已经掌握了“千年”的经验,它想要操控和误导人类也会很轻易。展开
标签:
X 关闭
X 关闭